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The Dalgarno-Lewis procedure is used for obtaining explicit solu-
tions to the perturbation equations, Three basic ideas are exploited:
1). By using the wave functicon through the first order as the zeroceth
order wave function in a new perturbation calcuiation, we obtain an
iteration procedure that converges with surprising rapidity. After
n iterations, the energy is given accurately up to terms of the order
of the 2n+1 power of a perturbation parameter. 2). By varying the
proportions of the zeroceth and first corder function in the wave function
through the first order, we obrain scmewhat better energies and still
maintain the ability to iterate, And 3). For degemerate and almost-
degenerate energy levels, the wave functions through the first order
and the energies through the third crder are obtained by solving a
finite ordered secular equation. This procedure is much simpler and

less apt to fail than the usual techaiques.
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The Dalgarno-Lewis procedurel for determining explicit solutions
to the perturbation equations has made it fzzsible to apply perturba-
tion theory to a wide class of molecular problems wherz complete sets
of solutions are not known for the unperturbed system. Perturbation
treatments have the advantage cver variational methods that they per-
mit the system itself to select the proper type of terms which should
be included in the trial wave function. From a knowledge of the
trial wave function through the first order, the energy can be cal-
culated accurately through the third order. For many chemical purposes
this is sufficient accuracy.

The present paper ccontains three basic ideas:

1), By using the wave function through the first order as the zeroeth
order trial function in a new perturbaticn calculiation, we obtain an
iteration procedure that ccrnverges with surprising rapidity. After

n iterations, the energy is given zccurateliy up to terms of the order
of the 2n+1 power cf a perturbation parameter.

2). By varying the proportione of the zerceth and first order func-
tions in the wave function through the first order, we obtain some-
what better energies and still maintain the ability to iterate,

3). For degenerate or almost-degenerate energy levels, the wave
functions through the first order and the energies through the third
order are obtained by solving a finite ordered secular equation.

This preocedure is much simpler and is less apt to fail than the usual

techniques.
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The paper is divided into two parts. The first is concerned with
the perturbation of non-degenerate energy levels. The second deals with

degenerate or almost-degenerate problems.

PART 1, PERTURBATION OF NON-DEGENERATE ENERGY LEVEL.

For quantum mechanical systems with a perturbation potential
proportional to a parameter A , a determination of the Rayleigh-
Schrodinger perturbation wave function through the n-th order permits
the determination of the energy accurately2 through terms of the order
of ?&2n+1 . Much faster convergence without additional effort is
obtained by a First Order Perturbation Iteration Method or FOPIM. This
corresponds to using the Dalgarno-Lewisk3procedure for determining the
explicit first-order Rayleigh-Schrodinger perturbation wave function
from a zeroeth-order function. The wave functicn through the first-
order satisfies a Schrodinger equation and can be used as the zeroeth-
order function in the calculation of an improved first-order function.
The perturbation potential for this new calculation is proportional to

;\? . This process can be iterated and each time the new perturbation
potential is proportional (in smallness) to the square of the previous
perturbation potential. Thus, after n iterations, the energy is
given accurately up to terms of the order of A raised to the (2)n+1
power. For example, after 5 iterations the energy is accurate up to
terms of the order of ?k?h .

Some additional improvement is obtained by a small modification
which we might term FOP-VIM or First Order Perturbation-Variation
Iteration Method. In FOP-VIM, following Dalgarno and StewartA, the
perturbed wave function is taken to be the variationally best linear
combination of the zeroeth order and Rayleigh-Schrodinger first order
functions. This perturbed-variational function is then taken to be the
zeroeth-order wave function for the calculation of an improved perturbed-
variational function. Whereas FOP-VIM may have only a modest advantage
over FOPIM for non-degenerate energy levels, we show in Part II that

FOP-VIM is very useful for degenerate or almost degenerate energy levels.




examplie, the saift of the eger
uniform electric field. The erergy levels Eecoms
as the result of the electric field and nc statiomary state solu
to the Schrodinger equaticn exist with the prescribed bourdary condi-
tions. Other perturbation sequences may diverge for purely mathematical
reasons. In this case, a particular perturbation scheme mav have a
considerable advantage over ancther procedure, Usually, we might expect
that the FOPIM and FOP-VIM should converge rapidly (either asymptotically
or absolutely) if the second-crder Rayleigh-Ritz perturbaticn erergy is
small compared tc the first-order. Resezarch on the convergence of per-

turbation methods is very much needed.

Rayleigh~Schrodinger Perturbaticn Theory for Non-Degenerate Energy Level.

Corresponding to an unperturbed Hamiltonian h , we know the q-th
energy level 6&(0) and its normalized eigenfunction Hb;(O) . For
present purposes; we assume that éq(O) ie non-degererate; in Part II;
we consider the degenarate probismz. The Schrodinger equatieon for the

unperturbed system is then
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The corresponding Schrodinger equation for the perturked sys
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We fix our attertion on that psrturbed state ghick, in the 1imit as

A approaches zero, has qu = \Pq(ﬂ) and Eq = é{q(@) . In order




to keep the notation from becoming too clumsy, the subscript q will be
omitted except where it is necessary to avoid confusion between differ-
ent energy states of the system.

In the Rayleigh-Schrodinger perturbation theory, \P and E are

expanded in power series in the perturbation parameter,
u n - ' (
\P = 2 A K"’ (0) , E = Z An é ")(o) (4)
N=0 n=o

Clearly, 5(0) (0) = €(0) and since the gq-th energy level is non-
degenerate, \U(O) (0) = W(0) . Substituting these power series into
Eq. (3) and equating the coefficients of each power of the perturbation

parameter leads to the set of perturbation equations,

. oo .
(4-€@) ¥ + (V- e )y "= > el %) ©

J=2
For the first-order perturbation equation with n =1 ;, the right-hand-
side of Eq. (5) is zero.
Dalgarno and Lewisz’3 found that in many cases the perturbation
equations can be solved explicitly. Thus, defining a function F(O0)

such that

W%y = Floy ¥

(6)

the first order perturbation equation requires that
[Fo), Hl V()= (V- @) v&
or, if \P(O) is real,

Z N2 (WZ(O) Vv, F(o)): ZY(o)(V—G('}o))V@

(8)

Since Egs. (7) and (8) do not specify F(0) to within an additive
constant, we can require that \P(l) (0) be orthogonal to \P(O) 5 Or

4




(Y, Fa¥@)) = o 0
The norm of \+’(1)(0) is desigrnated as S(0) ;

(FO¥&, F@YE) =S

Using the first, second, and third order perturbation equations,

it is easy to show that

6(‘)(0) = (Y@, V (o) (1)
E@—)(O) - (W(o) , V F (o) \V(O)> 1

By = (FOYO,VFR) — ) SO oy

The expectation value of the energy corresponding to the zerceth order

wave function is
E@) = (YO, H10) = eP0+ ne  w

Let us define VJ (1) as the normalized wave function through the first

W(1) = D 1-71"5(0] (H— 2 F(O)) Yo (15)

The expectation value of the energy through the first order is

2 .2 3 (3
E@ = (‘V(t), H"f"(i))= E+ 262 € () (16)

I+ A% .5 (o)




Or, rearranging the terms,

E O) = € (03 + 2 em(b) = 6(2) (0) +>\3e(~3)(0)
A‘} N (9) LECZ)(O) + A€ (3(0)_] (17)
|+ A% S (o)

Comparing Eq. (17) with Eq. (4), it is apparent that E(1) is accurate
up to terms of the order of 7\_4 . Everything up to this point is well-
known and has been discussed in the literaturel. The following treat-

ment is novel.
FOPIM.

The wave function \P(l) satisfies the Schrodinger equation
‘& ({) \P(l) = E (O) \)U(‘) (18)

where

A\/ + \KZ € (l)(o) F(O)

h(l) = h+ [+ 2 F (0 (19
The Hamiltonian for the perturbed system is then
H = h(l) + A% V(D) (20)
where
(
. f(o) [V-e¢ )(o)___{ on

I+ 2 F (o)

Now we consider the new perturbation problem in which '\P (1) serves
as the zeroeth-order wave function and 7\2 V(1) is the perturbation
potential. Note that 7\2 plays the same role in the new problem as
A plays in the original problem. The new first-order perturbed wave

function is

vy = F oy v 2




where the function F(i) is determirned by

[F(*), H] Y= (V (1) - E(')(t)) SO

or, if qj(l) is real,
(24)

2. V- (V) Y Fw) = 2 YO [Vo-€ W] v o
The speci'-fication of the F(l) is completed by the requirement that
(Vay, FOYm) = o (25)
The norm of P (P(1) is designated as s(1) ,
(FO 40, FOYW) = SO @)

Using the first, second, and third order perturbation equations for the

new perturbation problem,

ey = (v, V0 V) = | E()-ECI/F (27)

ém(:) = (\U(i)) V() FG) W[i))

(28)

() = (FO¥® , VO 7O ‘P(:)) - e, S@)

(29)

We can now define the second iterated normalized wave function

V()= |1+ A% Sa)]'li(wxz Fa) ¢y oo

The expectation value of the energy corresponding to .VJ (2) is




. 4 (@) 6 (3
_ _ AET)+HAET()
E(2) = (2),8 (@) ) = EQ) + (31)
(\P > [+ A SO

Comparing Eq. (31) with the Rayleigh-Schrodinger perturbation expansion,
Eq. (4), it is apparent that E(2) is accurate up to terms of the order
of 7L8 .

The function \*1(2) can now be used as the zeroeth order wave
function in a new perturbation calculation. Indeed, after (nt+l)

iterations we have the normalized wave function

-k a
W o)) = £5 + ;9)2&‘5(14):{ (H— A F(W)) W () (32)

A R ; , n
Here, because of printing difficulties, we use the notation a = 2

The S(n) is the norm of V/(l)(n) s

(F(n) VY@, rm Y ) = s €5

The function F(n) satisfies the inhomogenous partial differential

[FO), H]9m= [Ver-<“GaJve

together with the requirement that

<\P<n>,F(n) Y)Y = o (35)

From the first, second, and third order perturbation equations for this

perturbation problem it follows that




ém(‘") = (“P(\n)) V (m) ‘V(H)) = [E('n) —E ("")]/)\4 (36)

€20 = (wor, VYOI FOYG))

(37)
€9 = (Fon Yo, V() R (i) e
0 = (Foo Voo, VO Fo¥G)) ey S
The expectation value of the energy corresponding to #y (ntl) is
2325600 + € )
E(otl) = [\P(o+l),H P(n+l)) = E(n) + , (39)
( " ) I + A% S}

Comparison of Eq. (39) with the Rayleigh-Schrodinger expansion, Eq. (4),
shows that E(nt+l) is accurate up to terms of the order of 7\43 o
The function \F)(n+1) satisfies the Schrodinger equation

h(otl) Y (otl) = E(n) W (i) (40)

where

h(nt+l) = h(n) + €3
1+ A% F(»)
The Hamiltonian for the perturbed system is then
2a
H = h(otl) + A7 V(xtl) (42)
where
(1
v\ | V() — € n

1+ A% F()

The iteration scheme can then be continued through the next step.
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FOP-VIM,

Following Dalgarno and StewartA, we can consider in place of \%’(1),

the normalized function
_—i
L) =1+ 270 SE)] (1+2=<@F@) ¥

Here & (0) 1is a parameter which is chosen soc as to make
JE'(1)/ Jdx(0) = 0 (45)

where

E'(1) = (X(i)) HX(‘)) (46)

For this optimum value of & (0) , the energy E"(l) 1is a solution to

the secular equation
E (9 -E0) 2 e®) @7
X2 ? (0) -—}{zécz)(o')»-i— 2 €@(0)+A* SO[E@)~E ¢ |
There are two roots to this secular equation. However, only one of

these roots corresponds to E'(l) approaching & (0) as /A approaches

zero. Only this root can have physical significance for our problem,

E'(l) = E(0) +Fe( 70) )5(32°j {l 47‘65()[5 é (48)
2 2% S(o) [e®g-a e"%«g}

Expanding E'(1) and E(l) in powers of A, we find that

4 -3 z 511 et )( )] (3)
E'(1l) - E(1) = 4—[%75(:?%_3; + A )j‘:ecz\(o_] 23(0)63 J 49)
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For the ground state, it is weli known™ that is necessarily

negative., Thus, for the ground state, E?(1) - E(1) is negative. For

other states, the sign of E'(1) - E(I) is not known a-priori.

The optimum value of ¢ (0) is

_ E()- E
X (0) = A @) (50)

Expanding in powers of 7\,

o((o) = | + __,5_(_3)_(_)_ [(iﬂ) S(o)]+... (51)

e(z)( ) ¢ (7—)(

The normalized function ‘A (1) satisfies the Schrodinger equa-

tion
@) A@ = @ X (52)
where
)
B = b (o) V+ A (1-2(0) €“%e) + 3% (0) € by F (o) .

|+ Ao (o) F()

The Hamiltonian for the perturbed system is then

H = n(D + a2 v (54)

where

[;['(( —-oc(o)) + A (o) F—'(o)] [\/—- e(‘)(o)]

| + A (o) F(o 9

v'(1)

From Eq. (51) it follows that 7L-1(1- X{(0)) is zeroeth order in 2 .
Clearly, in much the same manner as in FOPIM, the '?L(l) can be

used as the zeroeth order wave function to generate a new first order

function
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L) = [) + a1 08(,)5(1)] z(ﬂ—t—ﬂzx(ﬂ) F?«))?C(O (56)
Here S%(1) is

s = (wm X (0),F (1) L) (57)

The function F'{l1) satisfies the equation

[F'o H] KO =0 -EOVH e o

together with the condition

(7(,(1>,F"(1) X(l)) = 0 (59)

The parameter o (1) 1is adjusted so as to make BE“(Z)/ 20((1) =0

where

E°(2) = (Xm,ﬂ 7(.(2>) (60)

This procedure may be iterated as often as desired or required.
The energy E"(2) may be somewhat improved without much additional

work. In place of 7[(2) , we can define the function

w(2) = W) + 2 FOV)+ 2B F XY 1

2 0
The constants ¢ and FS are adjusted sc as to optimize the energy

E”(R) = (40(2)3 H w(:))/(w (2)9 w(2)> (62)

The ™best™ value of the energy is that root of the three dimensional
secular equation which reduces to € (0) in the limit as A approaches

zero, This variation of the FOP-VIM can also be iterated.




13

Non-degenerate perturbation thsery becomss imz2p7li
energy levels lie close togetiner and interzet stromgly under the

influence of the perturbation. In order to exsmire the explicit effect

of some "o"™-eth quantum state on the g-th state under congideration,

let us form the trial wave function
2
P = 'Xar(')"'l C¥, (0 (63)

The constant C can be adiusted sc as to optimize the znergy

(0, 820) / (30, $0) (o)

In this, and the following paragraph, it is convenient to use the nota-

tion: (X)ij = ( \LQ(O), X \fﬁ(O)) . In forming the matrix components
- -

for the two dimensional secular equaticn, the only special pocint to be

noted is that
F ), = ) I €(0) - € (0)) (65)

The constant C corresponding teo the physically significant oot of

the secular equation is

C = (e -¢,0) [ - (¢, 0-¢ (o)) A \ﬂ

+ 7\[”“]’?"‘““ (66\

Expanding the energy in powers of

81"'-'- E/(’) 3 A‘f[f((o) ( o) - €(o> -gz-g—“&-(l:(o)\/)]
t

(& (o) — € (O))s
(67)
+ e e
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Since E;(l) is accurate through terms in A~ , it is not surprising

that the first corrections to E;(l) shoaid be pronortional to 214 .
From Eq, (67) it follows “hat gq > Eglm.) if € (o) > € (0) and
E P E“(l.) if eq(om < E (0\ + For the ground state, the energy is
lowered by the interaction w1th every other state,

1f Iaq - E?l(l)l | E(1) - quO‘»l s the expansion cof 6 in powers

of A (as given by Za. (6/)) is no 10mgcr pessible and t%e non-degen~

,D

>0

erate perturbaticn theory becomezs inapplicable. In such cases, the
almost-degenerate perturbation treatment given In Part II may be used.
For the ground state, the FOP-VIM energiss E'(a) or E"™(n) are
greater than or equal to the exact erergy for the perturbed system.
As Sinanoglu has shown53 similar variational principles can be estab-
lished for the perturbed energy of the higher emergy states provided
that we know the set of unperturbed wave functiong q/k(O) for all of
the states having energy less than éq(O) . Thus, we define the wave

function

-

‘k(') = X%O) + A* CK%— WK (9 (68)

K=

Here the summation extends over all of the quantum states whose

[¢]

°

unperturbed energy ék(O) is less than éq(_O) The constants

qu are varied so as to give the lowest erergy

&) = (_Q%(.)j HQ%(:)> (g_ ®, 0,0)

subject to the conditiom that as A appreoaches zero 6 (ﬁ) = éq(O) .
This entails the solution of a g-dimensional secvlar EQJQKLOHQ The
LBwdin partitioning technique6 is particulsarly well-gsuited for the
determination of the roots of this secular equaticn. Only one of
these roots reduces to €q(0) when A aprroaches zero., The other
(g-1) roots are lower than dg;(l) o Thus, by MacDonald's th@orem/,
we can be sure that the value of (‘S;(l) is larger tham the exact
energy E _, 5
q
Both the c}qm end the [ (1} can e us

functions in a FOP-VIM sequence,

Y

zeroeth order

f
©
0
b
33
153
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PART Ii, FERTURBATION OF DEGENERATE CR AIMCST DECENERATE ENERGY LEVELS.

and difficult to ap;ly to perturbation problems {mvoliving degenerate or
almost-degenerate energy leve 1sio Greater aacuraéy znd f£ar greater
simplicity can be cbtained by the following procedure: DE-FCP-VIM; which
is FOP-VIM genera17zed to apply to the degenerate and szlmost degenerate
energy levels.,

; . Corresponding to the Hamilitonian h for the unperturbed system

form a complete set of zigenfunctions for each of the erergy levels

e, under consideration. he e wmav z!1 bave z singls values cox-

k k
responding to a degererate energy level cr elae thevy mav have slightly
different values corresponding tc a closely packed group of almost
degernerate energy levels. Since the states corresponding to different
l energy levels may interact under the influence of 2z perturbation, the
‘ larger the number of interacting states considered the greater is the
accuracy. The Schrodinger equation for the unperturbed system is

The Hamiltonian for the perturbed system is

H = h+ AV (71)

e
4]
&
%
(x4
]
=
b
5]

The corresponding Schrodinger equation for the perturkte

H\Y. = E, . 72
qﬁ J =3 (2

We fix our attention on those s states %PQ whose energies Ej

[

approach the values of e irn the 1imit as A approeaches zero. Let

k
‘ us define a set of functions ¢ such that if ﬁk waere a zeroeth
|
order wave function, then G ¢ would be a possible first order

function. The Rayleigh- er-";md,.nzer first order perturhat

;-Ja
Q
5]
14
2
Di
ct
e

o]
4]

which determines Gk is




(h - oG B, + [v - (‘V)kk]sﬁk = 0 (33)

Here the notation (P)ii will be used to dencte (ﬁi,? @j) « Equiva-
-~

lent to Eq. (73), we can write

[Gk’H:‘@k = [V - W)kk] ¢ (74)

Or, if ﬁk is real,

Z Ve (9 V.6) = 24 [V-0a]g o

The first approximation to ﬂfi can then be written in the form

\Pj (1) = 5 [:O(J-’,k + A3 « Gk] ¢:<, (76)

The constants A and . .
o(Jsk B

3,k are chesen so as to normalize YQ (L)
p) J

and optimize the energy

E@ = <*Pj<1>,ﬂ \fiu)) (77)

The optimum values of E%(l) are given as s of the roots of the 2s

dimensional secular egquation

(78)
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where A s B

the eiemante

HLJ‘ = (95‘_ , H ¢_,‘) - E(=)<¢a; ¢J) {79)
By = (%, M6 1) - EQ(#, & #)

{80)

C.. = (GiﬁjHGj?j E()(é- ,G P ey

The LBwdi n6 partitioning technique is particularly waell suited to the
solution of such secular equaticne. Tha § roczs whizh have physical
significance reduce to the values of = in thke Iimit a3 A arwproaches
zero. The other s roots have no sigrnificance for our perturbation
problem, The values of the E {1) obtained in this marner should be
accurate through terms in 7\3 and somewhat wore sccurste than the
Rayleigh=Schrodinger energies through the third order,

In the Rayleigh-Schrcdinger treatmentz, 2l1 »f tha states under
consideration have the came unperturbed eperpy. Almost-degenerate
examples must he treated ir g verv asrtificiagl marne- w-ish zifectively
reduces them tc true degensracy . The comstazrtz oOF.
making a unitary transformation which diagenalizes ¢
If, however, some of the first-order perturba
erate, it is necessary to diagonalize sets of matrices which imvolve
the second-order perturbation energy, etc. Thus the determinaticn of
even the c(j k is compliicated and the procedure deperds z great deal
upon the orde; of perturbatior in which the dzgeneracy is removed,
The determination of the [3, i
Gkﬁk are painstakingly adjusted (by addirg or scbtracsting varying

amounts of the @j) 50 a3 to satisfy a fami

None cf these special =cnsiderztions is reguired with the D
and the almost-degenerate states can bte conzidered together with the

degenerate,
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